
Fakultät für Informatik
Lehrstuhl für Echtzeitsysteme und Robotik

BOXRL: Safe Reinforcement Learning for
Robotic Manipulators

Yangtao Chen, Carter Facey-Smith, Helle Friis and Ansgar Schäfftlein

Practical Course Reinforcement Learning for Robotic Manipulators SS 2023

Advisor: M.Sc. Jakob Thumm

Supervisor: Prof. Dr.-Ing. Matthias Althoff

Submission: 10. August 2023

BOXRL: Safe Reinforcement Learning for Robotic
Manipulators

Yangtao Chen, Carter Facey-Smith, Helle Friis and Ansgar Schäfftlein
Technische Universität München

Email: ge52feb@tum.de, carter.facey-smith@tum.de, ge62deq@mytum.de, ansgar.schaefftlein@tum.de

Abstract—Over the last decade, deep reinforcement learning
has been used with significant success to learn from trial and
error. Examples include playing video games, object manipulation
and the fine-tuning of large language models. In robotics, there
is an increasing interest in using deep reinforcement learning for
tasks involving interactions with humans. However, the black-
box nature of deep reinforcement learning generates a need for
safety precautions to prevent humans from being harmed by the
robot’s unpredictable behavior.

In this paper, we apply the SaRA safety shield approach to
ensure DIN-certified safety in a scenario where the robot has to
evade striking combinations executed by a human. Being more
demanding than regular human-robot interactions, this novel
task provides a challenging testbed. First, we train agents in the
simulated Mujoco environment and then deploy them afterward
on a real Schunk robot. Our results indicate that the current
safety shield approach can be very restrictive for the evasion
case at hand.

I. INTRODUCTION (C. FACEY-SMITH)

Advancements in robotics and artificial intelligence have
led to an increased presence of robots in our everyday en-
vironments, from industrial applications to domestic settings.
As the frequency of human-robot interactions (HRI) rises [1],
ensuring their safety has emerged as a crucial research con-
cern. This concern is amplified when we consider the potential
for robots to cause unintentional harm due to factors such
as unpredictable environments, or a lack of comprehensive
understanding of human norms and behaviors [2].

Human-robot interactions involve a complex blend of phys-
ical, cognitive, and social aspects. Physically, robots need to
respect human personal space and avoid collisions. Cogni-
tively, robots should understand and predict human intentions
to facilitate cooperative tasks. Socially, they should adhere to
human norms and behaviors to foster comfortable and positive
interactions.

The focus of this research is to investigate safe HRI within
the context of physical safety. Specifically, we aim to develop a
reward function for reinforcement learning (RL) based robots,
enabling them to navigate around humans without causing
harm. However, the design of reward functions that encourage
safe behaviors presents a significant challenge due to the
complex and high-dimensional task space, coupled with the
need to predict spontaneous human behavior.

By exploring and improving upon various factors within the
reward function, including the incentivization of goal com-
pletion, collision avoidance, and respect for human personal
space, this study aims to provide insights into how RL can

be used to improve safety in HRI. It is our hope that this
investigation will contribute to the groundwork of safer, more
reliable, and more user-friendly robots in the future.

II. LITERATURE REVIEW

In the following section, we introduce the concepts underly-
ing our project. Firstly, we cover an approach to making HRI
safe (section II-A). Secondly, we provide a short introduction
to reinforcement learning (sections II-B to II-E), which was
used extensively during the course of our project. Lastly,
we discuss work related to the gamification of human-robot
interactions (section II-F).

A. Safety shield (C. Facey-Smith, H. Friis)
In the literature, the concept of a ’safety shield’ is em-

phasized as a critical component for ensuring human safety
when working in close proximity to robots, especially in the
context of reinforcement learning within real-world human
environments [3], [4]. The primary goal of the safety shield
is to prevent harm to humans without unduly restricting the
actions of either the robot or the human.

In one study [3], the safety shield is described as operating
at high speed, allowing the robot to function at a lower
frequency. This design ensures that the robot will come to
a complete stop before a collision occurs, thereby enhancing
safety. Furthermore, the safety shield’s presence improves the
performance of reinforcement learning by preventing colli-
sions with humans during training episodes, ensuring that the
episode continues uninterrupted.

Another work [4] delves into the technical aspects of
safety, such as the reachability analysis of human body parts,
represented by capsules or balls, depending on the specific
body part. By connecting these geometric representations, the
human’s motion can be accurately defined by the motion
capture system. This information is then used to assess the
potential for collisions between the human and the robotic arm.
If a collision is deemed likely, the safety shield is activated to
halt the robot immediately, thereby preventing harm.

Overall, the safety shield serves as a vital tool in human-
robot interactions, providing a robust mechanism to ensure
human safety without limiting the functionality and learning
capabilities of the robot.

B. Reinforcement learning (A. Schäfftlein)
Reinforcement learning is a machine learning paradigm used

for solving sequential decision-making problems by learning

from trial and error. Over the last decade, combining this ap-
proach with deep neural networks [5] has enabled algorithms
to play simple, low-resolution video games [6], complex multi-
player video games [7], and to beat top human players in
the demanding board strategy game “Go” [8]. Most recently,
deep reinforcement learning has been used to fine-tune large
language models and align them with the developers’ interests
[9]. In robotics, the approach has been used for grasping [10]
and in-hand manipulation [11].

A key feature of reinforcement learning is the interaction
between the agent and the environment, which spans multiple
time steps t. Based on an observation of a state st, the agent
takes an action at and receives a reward rt as well as the
next state st+1 from the environment [12]. In the concrete
example of a video game, the state st could be a preprocessed
image of the screen, the action at could be moving in one
of the four directions of a two-dimensional space or firing
at enemies, and the reward could be the points awarded by
the game [6]. The agent is supposed to maximize the reward
[13, p. 2], which can either be a positive scalar (a positive
reinforcement), a negative scalar (indicating a punishment), or
zero [13, p. 374]. Maximizing the reward requires the agent
to explore the environment by taking new actions as well as
exploiting courses of action that have proven effective in the
past, leading to the exploitation-exploration trade-off, which
is not present in other learning paradigms [13, p. 3].

This concept can be formalized by a Markov Decision Pro-
cess (MDP), which is denoted as the tuple < S,A, p, r, s0, γ >
[12]. The fundamental property of a MDP is that the next
state st+1 depends only on the current state st and the current
action at and not the interaction history [12]. This property,
which can mathematically be expressed using probabilistic no-
tation as p(st+1|st, at, st+1, at+1, ...) = p(st+1|st, at), is also
referred to as the “Markov property” [12]. In reinforcement
learning, it is crucial that the environment fulfills the Markov
assumption because it allows the agent to compute an action
using only the current state. Moreover, the formulation as a
MDP enables the use of dynamic programming methods, for
example based on equation 7, to solve the reward maximiza-
tion problem [13, p. 73].

The components of the MDP introduced above include the
set of all possible states S, the set of all possible actions A, the
transition probabilities p(st+1|st, at), a reward r ∼ R(r|s, a)
as well as a discount factor γ ∈ [0, 1] and the initial state s0
[12]. The transition probabilities determine the probabilities
with which the agent will end up in a subsequent state st+1

given a current state st and the current action at [12]. An
environment and the reward function can be deterministic,
but we present the general case here. The discount factor
γ decreases the value of rewards the further they are in the
future, hence introducing a preference for rewards that will be
received soon (see equations 3, 4, 6, and 7).

The goal of reinforcement learning is to maximize the
expected discounted sum of future rewards over trajectories
τ sampled from a reasonable distribution, which can be
expressed as follows using the notation introduced above as

well as the symbol π for the policy [12]:

max
π

Eτ

∑
t≥0

γtrt , γ ≤ 1 (1)

In equation 1, the sum is over the subsequent time steps.
For each summand of the sum, we multiply the reward rt of
the time step t with the discount factor γ to the power of the
current time step, effectively reducing the value of rewards
further in the future for γ < 1.

The agent is defined by its policy π, which is the probability
of taking an action a in a state s [12]:

a ∼ π(a|s) (2)

The probabilistic component is necessary during training
due to the need to explore the environment, but we use the
deterministic policy during deployment. In the case of deep
reinforcement learning, the policy π can incorporate one or
more deep neural networks.

The optimal policy π∗ maximizes the cumulative discounted
sum of rewards over the trajectories (see equation 1). Two
main deep reinforcement learning approaches for obtaining
this optimal policy π∗ exist: Value iteration methods (section
II-C) and policy gradient methods (section II-D). Moreover, al-
gorithms exhibiting features of both approaches, called “actor-
critic methods”, exist as well (section II-E).

C. Value iteration methods (A. Schäfftlein)

The fundamental concept of value iteration methods such
as Q-learning [14] is the Q-value function Qπ(st, at). It is
also referred to as the “action-value function” because it
represents the expected cumulative reward for taking an action
at in a state st and then following a specific policy π [12].
Mathematically, the Q-value function is defined as [12]:

Qπ(st, at) = Eτ

[∑
t≥0

γtrt|s0 = s, a0 = a, π

]
(3)

As shown in equation 3, the value of the Q-value function
Qπ(st, at) depends on the current state st and the current
action at as well as the current policy π. It is computed as the
expected value of the discounted cumulative reward

∑
t≥0 γ

trt
over the trajectories τ , conditioned on the initial state s0, the
initial action a0 and the policy π.

The optimal Q-value function Qπ∗(st, at) is the maximum
expected cumulative reward that is obtainable from a given
state-action pair [12]:

Q∗π(st, at) = max
π

Eτ

[∑
t≥0

γtrt|s0 = s, a0 = a, π

]
(4)

Note that the optimal Q-value function maximizes the goal
of reinforcement learning (equation 1) for a given initial state
s0 = s, an action a0 = a and a policy π. Thus, it follows that
the optimal policy we want to find maximizes the optimal Q-
value function Qπ∗(st, at) [12]:

π∗(s) = argmax
a

Q∗(s, a) (5)

Due to equation 5, we can obtain the optimal policy by
finding the optimal Q-value function, which is now discussed.
The cumulative discounted reward

∑
t≥0 γ

trt in equation 4
can be decomposed into the immediate reward r(s, a) and the
discounted future reward γQ∗π(s′, a′), where the ′ indicates
the next state. By rewriting the equation further, we arrive
at the Bellman optimality equation (here for a deterministic
reward) [12]:

Q∗π(s, a) = Es′∼p(s′|s,a)

[
r(s, a) + γmax

a′∈A
Q∗π(s′, a′)

]
(6)

It can be shown that by using the Bellman optimality
equation as an iterative update rule for fixed-point iteration
with a suboptimal Q-value function Qπ(s, a), as shown in
equation 7, the Q-value function will converge over time to
the optimal Q-value function if the Q-function is implemented
as tables, and all state-action pairs are updated during each
iteration [12]. In this iterative update rule, the new estimate
Qπ

i (s, a) is computed using the old estimate Qπ
i−1(s

′, a′):

Qπ
i (s, a) = Es′∼p(s′|s,a)

[
r(s, a) + γmax

a′∈A
Qπ

i−1(s
′, a′)

]
(7)

Because the max operation over the action space in equation
7 is computationally infeasible for continuous action spaces,
vanilla value iteration methods are only applicable to discrete
action spaces [12]. However, an approximation of the max op-
eration using an optimal approximating policy, which is trained
using gradient descent, is possible [15]. This approach is
referred to as “Deep Deterministic Policy Gradients” (DDPG)
[15].

In classical reinforcement learning, the Q-function is repre-
sented by a Q-table. Deep Q-learning introduces a deep neural
network to approximate the same information as Qπ(s, a, θ),
with θ being the parameters of the neural network [6], increas-
ing generalization and scalability but removing the theoretical
convergence guarantee. The possibility of divergence was
one of the reasons why deep reinforcement learning initially
received less attention than linear function approximators with
better convergence guarantees [6].

For deep Q-learning, interactions with the environment
are stored as tuples et = (st, at, rt, st+1) in a so-called
“replay buffer”, from which tuples are randomly sampled with
replacement for updating the neural work that represents the
Q-function [6]. The update step is computed with equation 7,
the Bellman equation [6]. The ability to reuse samples makes
value-based reinforcement learning algorithms such as deep
Q-learning more sample-efficient than policy gradient methods
[12], which are presented in the next section and do not feature
the ability to reuse samples.

D. Policy gradient methods (A. Schäfftlein)

Policy gradient methods take a different approach and
maximize the expected reward directly by gradient ascent
[16]. For this, the gradient ∇θJ(θ) = ∇θEτ

[∑
t≥0 γ

trt

]
is

required [17]. However, the computation of this expression
requires the gradient to be inside the expected value [17]. For
this reason, it is necessary to rewrite the expression, which
introduces the logarithm in equation 8 [17]. Moreover, we
use the fact that only the policy πθ depends on the network
parameters θ with respect to which we compute the gradient
to arrive at [17]:

∇θJ(θ) = Eτ

[∑
t≥0

r(τ)∇θ log πθ(at, st)
]

(8)

r(τ) is computed as
∑

t′≥0 γ
t
′

rt′ with t
′

as the variable
for the subsequent time steps. Unfortunately, this gradient
estimator suffers from high variance [17]. This is because we
use the reward r(τ) of the entire trajectory τ , which means
that we increase the likelihood of all actions executed during
a good trajectory [17]. The variance of the gradient estimator
can be reduced by augmenting the vanilla gradient descent
approach, as described in the next section.

E. Actor-critic methods (A. Schäfftlein)

Actor-critic methods reduce the variance of the gradient
estimator presented in equation 8 by combining value- and
gradients-based methods. The main idea behind actor-critic
methods is to augment policy gradient methods with a value-
based baseline function for the reward, reducing the gradient
estimator’s variance [17]. The variance of an estimate for the
expected value Ex[f(x)] can be reduced by subtracting a so-
called baseline b(x) [18] with the following properties: Firstly,
a baseline has to fulfill Ex[b(x)] = 0 so that the expected value
remains unchanged [17]. Using the linearity of expectation,
we can see that subtracting a baseline does not change the
expected value:

Ex[f(x)− b(x)] = Ex[f(x)]−Ex[b(x)]︸ ︷︷ ︸
=0

= Ex[f(x)] (9)

Secondly, a baseline should be an approximation of the
actual function to ensure optimal variance reduction. In deep
reinforcement learning, a typical choice for this baseline
with approximating properties is the value function V π(s) =
Eτ [

∑
t≥0 γ

trt|st], which represents the expected reward of
a policy starting in state st, irrespective of the next action
at [12]. By subtracting our baseline V π(s) and rewriting
the discounted cumulative reward as the Q-value function
Qπ(s, a), we obtain a popular gradient estimator [17]:

∇θJ(θ) = Eτ

[∑
t≥0

(Qπ(s, a)− V π(s))︸ ︷︷ ︸
Aπ(s,a)

∇θ log πθ(at|st)
]
(10)

We call the difference Qπ(s, a) − V π(s) of the Q-value
function Qπ(s, a) and value function V π(s) the “advantage

function” Aπ(s, a) because it describes what advantage the
action provides over the average action [17]. We refer to this
approach as an “actor-critic” method because we train an actor
(the policy) and a critic (the value function) [17]. An advantage
of this approach is that, contrary to deep Q-learning, it can
be applied directly to continuous action spaces such as robot
control [17].

This actor-critic formulation is the concept underlying
a popular algorithm called “Proximal Policy Optimization”
(PPO) [19], which builds on the gradient estimator in equation
10. Additionally, PPO uses two concepts originally introduced
by trust region methods (TRPO) [20]: Restricting policy
updates and using a surrogate objective [19]. Instead of maxi-
mizing Eτ [A

π(s, a)], TRPO maximizes a scaled version (“sur-
rogate objective”) Eτ [pt(θ)A

π(s, a)] with pt(θ) =
πθ(at|st)

πθold
(at|st)

[19]. πθold denotes the policy before the update step [19]. The
surrogate objective LCLIP used by PPO introduces additional
clipping:

LCLIP = Eτ [min
(
pt(θ)A

π, clip(pt(θ), 1− ϵ, 1 + ϵ)Aπ
)
]

(11)
This nested structure ensures that a lower (pessimistic)

bound of the unclipped objective is used, which increases the
stability compared to vanilla policy gradient methods [19].

F. Related work (H. Friis)
Many investigate, experiment and develop new designs or

tools in the field of human robots. Humans can get help
from the human robot in different tasks, such as lifting heavy
objects. When doing tasks together it is especially important to
remember to work in a safe, efficient, and successful manner
[21].

A way that human robots have been used that relates to our
topic is the game approach. In the field of human robot games,
there is a need for decision-making. The robot has to learn
new skills to communicate and make proper decisions against
or with the human [22]. The game field relates to games in
our physical world and not electronic games. When having
real human robots and a real human the interaction is thereby
physical. The human robots also have access to information
digital which is needed and used when making decisions.
Games have many limitations which is beneficial and at the
same time limiting for the human robot. Such as a game takes
place in a restricted space and with specified rules to follow
which benefits the human robot. On the other hand, games
are limited to a certain time period which may not be enough
to fully replicate some of the real world scenarios which
the games can symbolize [23]. This relates to our project
as the robot in our case also has to make a decision when
observing the human’s action which it learns in the training
with the recorded animations such as moving backwards to
avoid colliding with the human.

III. CONCEPT OVERVIEW

H. Friis, A. Schäfftlein: The main contribution of this paper
is an evaluation of the use of reinforcement learning algorithms

in unity with a safety shield [4] in real-life evasion tasks.
The safety shield stops the Schunk robot with six degrees of
freedom before a collision with the human could occur [4].
In particular, we use the task of evading a human trying to
box the robot, while the agent is supposed to stay in its home
position (the upright position) if it is reasonably safe for it to
be there.

Because the agent has to be trained in the simulation, the
first task is to capture human boxing movements for use in
the simulation (section III-A). These are then used to train the
agent in simulation (section III-B). Afterwards, the agent is
deployed on the real robot (section III-C). Both in simulation
and in deployment we have observed how the agent behaved.
With the observations in mind, we could start over in an
attempt to create an even better reward function.

A. Motion capturing setup (C. Facey-Smith)

Our research employs a 6-camera Vicon system for efficient
tracking of motion points in a global coordinate frame. This
system records data from reflective markers placed on an
individual’s upper body joints, tracking these points through
3D space at approximately 100 Hz with a root-mean-square
error of less than one millimeter [24]. The focus on the upper
body is due to the hardware limitations, the specific nature of
the HRI under investigation, and the table-mounted position
of the robot.

Before each new recording session, the camera system is
re-calibrated to account for any environmental changes in the
laboratory. The individual being recorded assumes a T-pose
for the initial recording. This pose is used to align the local
marker coordinate systems with the global coordinate system
and to adjust the offsets of the joints [24].

Following the recording process, the captured pose data
is passed through a post-processing pipeline to transform it
into a simulation animation that can be used in subsequent
training and deployment steps. Initially, the Vicon tracker
software exports the data to a CSV format. The pipeline then
fills in any missing values using polynomial interpolation and
removes outliers. The data is also smoothed using a 4th-order
Butterworth filter.

The cleaned data is then converted into Biovision Hierarchy
(BVH) format, a popular format for representing 3D character
animation. It is then transformed into a format compatible
with Mujoco, a physics engine widely used for simulating the
complex movements and interactions of robots [24].

B. Training setup (A. Schäfftlein)

Because reinforcement learning requires many interactions
with the environment, we have to train the agent in a sim-
ulated environment. For this purpose, we use the Mujoco
physics engine [25]. Furthermore, we use the reinforcement
learning implementations provided by stable baselines 3 [26],
facilitating parallelization through simultaneous training in
multiple environments. This library and our code are both
implemented in Python. We use mainly the stable baselines 3
default hyperparameters. However, after preliminary tests, we

reduced the network size for all algorithms to two layers of 16
neurons each and switched to the parametric ReLU activation
function [27] where applicable.

We evaluate two cases: One in which the action space
is discrete and one in which the action space is continuous
but reduced to one joint. We provide further details on the
implementation in section IV-A. For the discrete action space,
we use PPO [19] as well as a deep Q-network (DQN) [6]. The
DQN implementation uses gradient clipping, a target network,
and the Huber loss function. In the continuous case, we use
PPO [19] and optionally twin-delayed DDPG (TD3) [29].

We train the agents for 200 000 time steps. Metrics such
as the cumulative reward are logged using the framework
“Weights and Biases”1. For the DQN, we reduced the replay
buffer size to 100 000 and started the training at time step
40 000. As the observation space, we use the distance to
the left hand, right hand, or head, depending on which is
the closest. Moreover, we used 15 recordings fitted together
randomly to create the interaction sequence.

Because reinforcement learning results can depend signifi-
cantly on the random initialization (i.e., the random seed) [28],
we run each algorithm configuration with five different seeds
(14, 32, 56, 77 and 92). These results are then used to compute
the mean and standard deviation for specific metrics over the
course of the training process (see section V-A).

C. Deployment setup (Y. Chen)

Having obtained a trained agent from the previous parts of
the pipeline, it can be deployed on the hardware environment
of this project. Here, it has to be taken into account, that
the interfaces between the agent and the environment during
deployment are the same as during training. For example,
if the trained agent has been trained on specific hand, end
manipulator, and robot joint positions in the simulated envi-
ronment, the same observations have to be established in the
hardware communication, moreover, also in the chronology in
which these are fed to the agent. For one to assure this, the
observation keys in the configuration files of the environment
have to be unchanged when deploying.

Said observation keys are read by the real time communica-
tion protocol of the hardware environment which is the UDP.
This is realized within the deployment repository through a
Python script, which makes a correspondence between the
observation keys and the actual sensor data flow.

In a separate script, the actual agent is loaded through
its run ID in the configurations. The agent then gets the
observations as an input with which the computed action is
returned. Depending on the implementation, additional post-
processing steps can be added to the action such as clipping.

It has to be again noted, that the fed observations to the
agent in simulation and deployment have to be identical in
type and chronology. As customized observations can be added
in the environment of the agent, the same processing steps to
the initial observations have to be made in the deployment

1www.wandb.ai

repository. This can be either done in the UDP or deployment
script.

IV. PROPOSED METHOD AND IMPLEMENTATION

This section presents the proposed method and implementa-
tion for improving a reinforcement learning agent’s control of
a robotic arm. It discusses the use of action space wrappers,
the development of reward functions, and the challenges faced
during deployment.

A. Action space wrappers (C. Facey-Smith)

In the context of this project, we utilize ’wrappers’ as
Python files that extend the base functionality of the robosuite
Wrapper class. These wrappers encapsulate an instance of
a robosuite GymWrapper() call, which includes the defined
environment, variables, and functions. They then append addi-
tional functions to this base, thereby providing supplementary
functionality tailored to our specific requirements.

We implemented two custom wrappers in this project: the
’skill wrapper’ and the ’reduce wrapper’. The skill wrapper is
designed to facilitate the application of reinforcement learning
algorithms with a discrete action space, such as a deep Q-
network, to the interaction between the robot and the human.
It achieves this by transforming an integer action, provided by
the agent, into a change in joint angles. This transformation
is computed as the difference between the goal and current
robot configuration in joint space. It is important to note that
this wrapper is specifically designed for use with a discrete
reinforcement learning algorithm.

On the other hand, the reduce wrapper is designed to stream-
line the action space of a continuous reinforcement learning
agent by actuating a predetermined number of joints. This
allows for more focused control, with the flexibility to actuate
either the first joint alone or both the first and second joints.
This wrapper is intended for use with a continuous reinforce-
ment learning algorithm, such as Proximal Policy Optimization
(PPO), Deep Deterministic Policy Gradient (DDPG), or Twin
Delayed Deep Deterministic policy gradient (TD3).

These wrappers provide a mechanism to tailor the rein-
forcement learning approach to the specific needs of the
human-robot interaction, thereby enhancing the effectiveness
and efficiency of the learning process.

B. Implementation of reward function (Y. Chen)

Being considerably the most influential factor on the final
performance of the reinforcement agent, multiple approaches
have been conducted to reach its desired behaviour. During
the design of each reward function, the taken observations
and their subsequent computation to the scalar reward have to
be taken into account.

In the first stages of the project, fairly simple, sparse reward
functions have been implemented. These rewarded the agent
with a scalar value of one when being in the desired position,
which is the robot joint configuration represented by an array
with zero entries, and a negative ten when a collision of the
end effector and either one of the human hands occurred.

Approaches with reward functions of this kind yielded no
remarkable results as these lead to a more passive behaviour
of the final agent.

A change of reward function topology was made by in-
troducing dense rewards. With these, distance based rewards
incorporated trade-offs in between favored proximity to the
mentioned desired goal and the penalized proximity to the
human hand positions. As a base approach, the product of
the reciprocal value of the absolute euclidean distance and an
either negative or positive factor have been used to compute
the respective rewards, which are cumulatively added for each
step.

As of the time of the report, reward functions which
rewarded the agent for being in a constant difference to
the human hands yielded the most responsive and suitable
behaviour. In the aspect of implementation, the final part of the
reward consists of computing the negative, scalar difference of
the minimal human hand to end manipulator distance and a set
value. With this, the highest reward is zero while deviations
are penalized.

C. Iterative process for evaluating the reward function (H.
Friis, A. Schäfftlein)

Having written a reward function, we use it for training
the agent. Then several aspects are considered to decide how
well the reward function works and where there is room for
further improvement. For different seeds, we observe both the
physical behavior in simulation and deployment and the data
logged during training in “Weight and Biases”2.

Observing how the agent behaves in simulation is crucial
because it is a more direct way of evaluating it than looking
at the reward function. Looking only at the reward function
is problematic because it might not produce the behavior we
want in the robot.

During the evaluation, we had to consider that one seed is
insufficient to evaluate the reward function’s quality because
of the strong influence of random initialization. Because of
this, we have looked at multiple seeds.

We have logged several metrics, such as the reward during
training, in the tool “Weight and Biases”. Besides the visual
observation of the robot behavior, the reward curves have been
used to determine the number of time steps needed for training.
We successfully improved our reward function in an iterative
process until the robot’s behavior improved.

D. Implementation of deployment (Y. Chen)

Difficulties were faced during the deployment of fully
trained agents due to the difference in the configuration file
handling when comparing the training and deployment repos-
itories. As the latter was part of earlier projects, configuration
data were managed through reading JSON files. In the newer
approach, such as used in the training repository, configuration
data is organized in a cascaded manner through YAML files
which are read out by the HYDRA system which has been

2www.wandb.ai

created by the third party Meta. In the deployment script,
this is implemented by calling the main function through a
decorator in which the directory and the name of the training
configuration file is passed as inputs.

After extracting the required training configurations through
accessing the respective key words in the nested library, the
environment and reinforcement learning model are loaded
through functions from the human robot gym training utilities.
In the further process, the observations are passed to the
agent’s predict function. As the observations are computed
by key word comparison in the UDP script, an additional
sector for UDP specific observation keys is added to the
training configuration as the corresponding observations keys
in simulation and UDP do not match in name.

As only discrete agents were used during this iteration of the
project, the predict function of the agent returns a scalar value
depending on the actual observation. These values correspond
to specific joint configurations which are defined in the skill
wrapper. Consecutively, its post processing of the scalar action
values are added in the deployment pipeline after the predict
function. Given the minimum and maximum boundaries as
defined in the failsafe controller configuration, the passed
actions are clipped to a specific range before being transferred
to the robot.

V. EVALUATION

In the following sections, we discuss the results of our
experiments. We start with the training process (section V-A)
and continue analyzing the agent behavior both in simulation
and in reality (section V-B). Afterward, we evaluate the effect
of the safety shield (section V-C). Lastly, we present our results
on the importance of the sim-to-real gap (section V-D).

A. Evaluation of results during training (A. Schäfftlein)

As section III-B discussed, we trained the reinforcement
learning agent in a simulated environment. In the following
section, metrics obtained during this training process are
discussed. The reward function switches depending on whether
the human is closer than 1.5m. For the case with the close
distance, the reward is based on the distance between the
desired and current positions in joint space. In the other case,
the reward is the distance to the closest body part.

Reinforcement learning results can vary significantly de-
pending on the seed used for the random initialization [28].
In Fig. 1, five different seeds for a deep Q-network together
with the hardcoded baseline (black dashed line) are depicted;
each seed has its color. We plot the cumulative reward (i.e.,
the sum of the rewards that were obtained during one episode)
over the number of time steps for which the agent interacted
with the environment. Furthermore, we use a window filter to
smooth the curves, resulting in some missing values. All of
the seeds feature a markedly different training process.

To enable a comparison between the discrete and contin-
uous action spaces (see section IV-A), Fig. 2 depicts results
obtained with PPO in both cases. PPO was chosen because
it is an algorithm that can be applied to both the discrete

Fig. 1. Cumulative reward over number of time steps for training runs with
different seeds for a deep Q-network. The different seeds, each of which has
its own color, vary with respect to their performance. The hardcoded baseline
is the black dashed line.

Fig. 2. Comparison of the reward of proximal policy optimization (PPO)
in the case of the continuous action space with one actuated joint (red) and
the discrete action space with two goal positions reached by the actuation of
one joint (green). On average, the algorithm with the discrete action space
outperforms the algorithm with the continuous action space.

and the continuous action space, allowing us to evaluate the
effect of the action space without tainting the comparison by
performance differences due to the different algorithm types.
Nonetheless, minor differences, for example, regarding the
exploration scheme, remain. On average, the version with
the discrete action space outperforms the version with the
continuous action space (Fig. 2). Due to the limited number
of seeds we have used, we must be cautious with drawing
conclusions. However, if valid, the results might come about
because choosing between two separate configurations might
be more straightforward than actuating a robot joint.

The comparison between the discrete and continuous action
spaces is less conclusive if we compare PPO to a deep Q-
network (see Fig. 3). Here, the cumulative reward over the
number of time steps is plotted in blue for the DQN and red
for PPO. Firstly, the mean reward curves are much closer than
in the previously mentioned case, especially at the beginning
and at the end of the training process. Secondly, the choice of
different algorithms reduces the comparability. In particular,

Fig. 3. Comparison of the reward of proximal policy optimization (PPO) in
the case with the continuous action space (red) and a deep Q-network with a
discrete action space (blue). The performance of the deep Q-network (blue) is
initially better but then decays over time, presumable to the instability issues
associated with the algorithm.

Fig. 4. Huber loss for deep Q-network with gradient clipping and target
network over number of time steps. The loss increases steadily over time,
which is one possible reason for the performance decrease that can be
observed in Fig. 3.

we can notice a decrease in the performance of the DQN
after about 100 000 time steps, which is typical for value-
based methods. The instability issues with value-based deep Q-
learning (see section II-C) are the most likely explanation for
this. As shown in Fig. 4, the loss increases steadily for the deep
Q-network, which indicates divergence. The stable baselines 3
implementation we use does implement measures to alleviate
this downside of value iteration methods, for example, gradient
clipping and the target network. However, these methods are
not effective in the case at hand.

PPO, on the other hand, shows a more steady increase
in performance without significant drops (see Fig. 3). This
observation is in line with the fact that policy gradient methods
such as PPO possess a theoretical convergence guarantee
for sufficiently small learning rates [17]. Small declines in
performance indicate that the learning rate is too large for the
current objective function topology, causing temporary diver-
gence which subsides quickly. Moreover, the slower learning
process for PPO, which is evident between time steps 50 000

and 100 000, can also be partially caused by the lower sample-
efficiency of gradient-based methods in comparison to value-
based methods [17].

In addition to the reward function that was used for the
results that have already been presented, we have investigated
a second reward function. This reward function switches the
reward depending on whether the human is closer or further
away than 1.5m like the previous one but uses a symmetric
reward: For the low-distance case, we punish the agent for the
distance to the evasion position and for the high-distance case
we punish the agent for the distance to the home position.

In Fig. 5, the results of a DQN in the discrete case (blue),
PPO in the discrete case (green), PPO in the continuous case
(red), as well as TD3 in the continuous case (orange) are
plotted. Even though we train for the same number of time
steps, we can see much more apparent convergence with the
new approach (Fig. 5) than with the old one (Fig. 2 and Fig. 3).
The easier task makes the difference between the convergence
properties of the DQN and PPO, which has been discussed
previously, less evident. In addition, we can see an apparent
increase in the performance of the deep Q-network after about
40 000 time steps when it starts to update. Moreover, the
standard deviation, which is represented by the shaded areas,
is significantly reduced with the symmetric reward function in
comparison to the previous approach (Fig. 2 and Fig. 3).

As shown in Fig. 5, the two discrete algorithms, the
DQN (blue) and PPO (green), once again outperform the
two continuous algorithms, PPO (red) and TD3 (orange).
This observation supports the previously stated hypothesis
that learning the task in the discrete action space is more
straightforward than in the continuous one.

We compare the reinforcement learning results to a hard-
coded baseline to evaluate the qualities of learning-based
approaches compared to knowledge-based approaches (Fig. 1,
2, 3, 5). If the robot behavior is supposed to switch depending
on whether the human is closer or farther away than a certain
distance, it is straightforward to code a baseline based on a
switching condition. Our baseline moves to the home position
if the human is further away than 1.5m and to the dodging
position if the human is closer than 1.5m, which is the same
behavior that is encouraged by our reward functions.

As shown in Fig. 2, Fig. 3, and Fig. 5, none of the tested
algorithms can outperform the baselines for an extended period
in terms of reward. Nonetheless, single seeds are indeed able to
surpass the baseline shortly. This becomes evident in Fig. 1 as
well. One reason for the lower performance is that reinforce-
ment learning methods do not always learn the exact distance
to switch. This behavior could be caused by the two parts
of the switching condition featuring different probabilities of
occurring, leading the algorithm to exhibit a preference for one
because it maximizes the expected reward over its interactions.
Moreover, stability issues decrease performance. Firstly, value
iteration is potentially unstable (section II-C). Secondly, a high
learning rate can decrease the performance of policy gradient
methods such as PPO (section II-D).

The following section discusses the agent’s performance

Fig. 5. Comparison of different algorithms and actions spaces for a symmetric
reward function which punishes the agent for the distance to one of two
joint configurations that are chosen depending on the distance of the closest
body part of the human. The change in the reward function leads to much
clearer convergence behavior and smaller confidence intervals. Blue: DQN
with discrete action space. Green: PPO with discrete action space. Red: PPO
with continuous action space. Orange: TD3 with continuous action space.

in the simulation and during deployment on the real Schunk
robot. This analysis is based on visually observing the robot’s
behavior.

B. Analysis of resulting robot behavior (H. Friis)

We made many observations when deploying the robots
which we will go into detail in this section.

We changed the observation space for the agent such that
instead of looking at both the right and left hands distance
to the end effector it only looked at the smallest distance of
these two. Meaning the closest hand for the observation space.
Thereby keeping it more simple and we got more precise
results with this.

We observed when deploying some of the agents that it
reacted only to the left hand when trying to box. This could
be because there was a limited amount of animations with the
right hand trying to box and when training the agent for a
long time on that limited amount of animations it overfitted to
only react to the left hand. The reason for the limited amount
of animations with the right hand could be that the person
that was recorded trying to box was left-handed and thereby
without noticing did not use the right hand as much. We solved
it partially by changing the observation space as described.

The current set switching condition in the reward function is
set such that sometimes we observed that the distance between
the hand and the base of the robot resulted in oscillations. This
means that the robot constantly moved between going back
(dodging) or going to the home position as it was not sure
what to do. This could be because of the limited animations
such that it was not trained or had learned what to do in this
scenario. Another reason could be that the switching condition
was not final in this specific case thereby leading the robot
to not be sure what to do either. A third reason could be
because the end effector crossed the distance for the switching
condition of 1.5 meters and thereby constantly getting a new

action to move the opposite way.

C. Analysis of the effect of the safety shield (H. Friis)

We were very careful when working with the robot and by
having the safety shield we could make sure that we remained
safe. The safety shield was set with a switching condition at
1.5 meters. This meant that when we were closer than 1.5
meters the safety shield will be activated and the robot will
freeze at the position it was in. The idea was to make sure
that it was triggered as few times as possible. This made it
in some cases difficult to test the reward function in reality
because the safety shield was too restrictive.

The safety shield is working with capsules to illustrate the
volume of a body part where the sensors are placed to ensure
that we work in a safe environment. We experimented with
different sizes of capsules as we experienced that the safety
shield was blocked too early in our deployment. The result
of making the safety shield have smaller capsules while still
being realistic was that the safety shield was less restrictive
and the robot reacted to more of our human different actions.

D. Sim-to-real gap observation (C. Facey-Smith, H. Friis, A.
Schäfftlein)

The training of reinforcement learning agents often neces-
sitates numerous interactions with the environment, leading
to the frequent use of simulations to expedite training [30].
However, the simulated environment merely approximates
components such as robot dynamics, potentially diminishing
the performance achieved in the real world [30]. Given that
our model was also trained in simulation, the sim-to-real gap
could impact our performance.

Evaluating the sim-to-real gap presented a challenge as
it required identical motion in both the real robot and the
simulation. This issue was addressed by conducting motion
capture during an interaction with a hard-coded agent and
subsequently running the agent again in simulation on the
recorded motion sequence. The real data was recorded in the
UDP file, the Python interface to the real robot, and saved
post-interaction. Concurrently, the interaction was recorded
using the Vicon motion capture system, transformed to Mujoco
format, and the simulated data was subsequently recorded
(section III-A).

To ensure the exact sequence, no offsets in the x- and y-
direction were used during recording. However, a z-direction
offset was necessary due to shifted coordinate frames. A
potential issue with this approach is the time offset between
the start of the motion capture procedure and the start of the
Python UDP file, which was manually estimated to align the
two recordings.

To evaluate the sim-to-real gap, we compared the joint angle
of the second joint of the Schunk robot, crucial joint for our
evasion task, in reality and simulation during an interaction
(Fig. 6). Our results indicate that there is in fact a sim-to-real-
gap. The real robot results (green) are smoother than those
in simulation (orange), potentially due to an underestimation
of friction in the simulation, resulting in a more agile robot.

Fig. 6. Comparison of the angle of the second joint of the Schunk robot
in simulation (orange) and reality (green). We plot the joint angle in radians
over the time in seconds. For the simulation, we have used the motion capture
recording of the real interaction.

Additionally, the simulated robot does not always move as
close to the human as permitted (a joint angle of +0.5 rad),
unlike the real robot. This discrepancy could be due to the
human being closer to the robot in the simulation than in
reality, altering the robot’s response.

However, shifts in the human’s position might not neces-
sarily reduce the robot’s overall performance as it should be
capable of handling different human positions. Random offsets
during training and testing could have been applied. Compared
to the sim-to-real gap encountered when using video data from
simulation and reality, we do not leave the manifold of the
training data due to the sim-to-real gap.

Further experiments on the effects of the sim-to-real gap are
recommended to gain a more comprehensive understanding of
the issue.

VI. FUTURE WORK (H. FRIIS)
If we had the possibility for example if given more time

it would have been interesting to experiment more with
the reinforcement learning environment and experiment with
larger data sets.

To experiment more within the environment of reinforce-
ment learning we could have looked further into the different
parameters and which effect they have if we changed them.

To experiment with larger data sets it could be in the form
of more recorded animations. Where the animations also were
of different types such as a few where the human is far away
from the robot, a few where the human is near the robot, and
a few where the human moves between being far away and
close to the robot. It could furthermore also be interesting to
experiment with having different sets of data. For example, the
training animations being different from the animations used in
the simulation. Thereby could we potentially see more closely
how the robot would behave in reality before deploying it on
the real robotic arm.

VII. CONCLUSION (Y. CHEN)

During this work, the possibilities for safe human-robot
interactions have been explored using nowadays’s robotics and
artificial intelligence algorithms. To lay the groundwork for
more reliable and interact able robots, a reinforcement learning
based approach has been conducted.

Despite all of the models showing fast convergence during
training, the inner workings of a reinforcement learning agent
still remains a black box, and hence the arbitrary computation
of robot actions. Measures regarding human safety from this
perspective are an open topic. Additionally, the early activation
of the safety shield led to a restrictive behaviour of the agent
during deployment. To account for these factors, the human
model in simulation and the actual human during deployment
were placed in a safe distance to the robot. Said distance was
implemented in the final reward function by setting a switching
condition at that point.

Regarding the progress in the implementation, a stream-
lined workflow starting from the design of the reinforcement
learning environment, training, testing in simulation up to
the deployment of the agent on the actual robot has been
successfully achieved. Configuration parameters can be easily
accessed and customized while being simultaneously used in
training and deployment.

REFERENCES

[1] Guiochet, J., Machin, M. and Waeselynck, H., 2017. Safety-critical
advanced robots: A survey. Robotics and Autonomous Systems, 94,
pp.43-52.

[2] Lee, K., Shin, J. and Lim, J.Y., 2021. Critical hazard factors in the risk
assessments of industrial robots: causal analysis and case studies. Safety
and health at work, 12(4), pp.496-504.

[3] Thumm, J. and Althoff, M., 2022, May. Provably safe deep reinforcement
learning for robotic manipulation in human environments, 3rd ed. In
2022 International Conference on Robotics and Automation (ICRA) (pp.
6344-6350). IEEE.

[4] Schepp, S.R., Thumm, J., Liu, S.B. and Althoff, M., 2022, May. Sara:
A tool for safe human-robot coexistence and collaboration through
reachability analysis. In 2022 International Conference on Robotics and
Automation (ICRA) (pp. 4312-4317). IEEE.

[5] Rumelhart, D.E., Hinton, G.E. and Williams, R.J., 1986. Learning repre-
sentations by back-propagating errors. nature, 323(6088), pp.533-536.

[6] Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wier-
stra, D. and Riedmiller, M., 2013. Playing atari with deep reinforcement
learning. arXiv preprint arXiv:1312.5602.

[7] Vinyals, O., Babuschkin, I., Czarnecki, W.M., Mathieu, M., Dudzik, A.,
Chung, J., Choi, D.H., Powell, R., Ewalds, T., Georgiev, P. and Oh, J.,
2019. Grandmaster level in StarCraft II using multi-agent reinforcement
learning. Nature, 575(7782), pp.350-354.

[8] Silver, D., Huang, A., Maddison, C.J., Guez, A., Sifre, L., Van Den
Driessche, G., Schrittwieser, J., Antonoglou, I., Panneershelvam, V.,
Lanctot, M. and Dieleman, S., 2016. Mastering the game of Go with
deep neural networks and tree search. nature, 529(7587), pp.484-489.

[9] Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C., Mishkin,
P., Zhang, C., Agarwal, S., Slama, K., Ray, A. and Schulman, J., 2022.
Training language models to follow instructions with human feedback.
Advances in Neural Information Processing Systems, 35, pp.27730-
27744.

[10] Kalashnikov, D., Irpan, A., Pastor, P., Ibarz, J., Herzog, A., Jang, E.,
Quillen, D., Holly, E., Kalakrishnan, M., Vanhoucke, V. and Levine,
S., 2018, October. Scalable deep reinforcement learning for vision-based
robotic manipulation. In Conference on Robot Learning (pp. 651-673).
PMLR.

[11] Andrychowicz, O.M., Baker, B., Chociej, M., Jozefowicz, R., McGrew,
B., Pachocki, J., Petron, A., Plappert, M., Powell, G., Ray, A. and Schnei-
der, J., 2020. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research, 39(1), pp.3-20.

[12] Bäuml, B., 2023. Advanced Deep Learning for Robotics: Lecture 7.
Lecture material provided by the Technical University of Munich.

[13] Sutton, R.S. and Barto, A.G., 2018. Reinforcement learning: An intro-
duction. MIT press.

[14] Watkins, C.J.C.H., 1989. Learning from delayed rewards. Thesis (Ph.
D.). King’s College, Cambridge.

[15] Lillicrap, T.P., Hunt, J.J., Pritzel, A., Heess, N., Erez, T., Tassa, Y., Silver,
D. and Wierstra, D., 2015. Continuous control with deep reinforcement
learning. arXiv preprint arXiv:1509.02971.

[16] Mnih, V., Badia, A.P., Mirza, M., Graves, A., Lillicrap, T., Harley,
T., Silver, D. and Kavukcuoglu, K., 2016, June. Asynchronous methods
for deep reinforcement learning. In International conference on machine
learning (pp. 1928-1937). PMLR.

[17] Bäuml, B., 2023. Advanced Deep Learning for Robotics: Lecture 8.
Lecture material provided by the Technical University of Munich.

[18] Williams, R.J., 1992. Simple statistical gradient-following algorithms for
connectionist reinforcement learning. Machine learning, 8, pp.229-256.

[19] Schulman, J., Wolski, F., Dhariwal, P., Radford, A. and Klimov,
O., 2017. Proximal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

[20] Schulman, J., Levine, S., Moritz, P., Jordan, M.I. and Abbeel, P., 2015.
Trust Region Policy Optimization (TRPO). CoRR abs/1502.05477.

[21] Ajoudani, A., Zanchettin, A.M., Ivaldi, S., Albu-Schäffer, A., Kosuge,
K. and Khatib, O., 2018. Progress and prospects of the humanârobot
collaboration. Autonomous Robots, 42, pp.957-975.

[22] Lee, K.W. and Hwang, J.H., 2008. Human-robot interaction as a coop-
erative game. Trends in Intelligent Systems and Computer Engineering,
pp.91-103.

[23] Xin, M. and Sharlin, E., 2007, September. Playing games with robots-
a method for evaluating human-robot interaction. In Human Robot
Interaction. IntechOpen.

[24] Dobers, S., Nathaus, C., Balletshofer, J., 2022, August. Safe Reinforce-
ment Learning on a Real Robot.

[25] Todorov, E., Erez, T. and Tassa, Y., 2012, October. Mujoco: A physics
engine for model-based control. In 2012 IEEE/RSJ international confer-
ence on intelligent robots and systems (pp. 5026-5033). IEEE.

[26] Raffin, A., Hill, A., Gleave, A., Kanervisto, A., Ernestus, M. and
Dormann, N., 2021. Stable-baselines3: Reliable reinforcement learning
implementations. The Journal of Machine Learning Research, 22(1),
pp.12348-12355.

[27] He, K., Zhang, X., Ren, S. and Sun, J., 2015. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification.
In Proceedings of the IEEE international conference on computer vision
(pp. 1026-1034).

[28] Henderson, P., Islam, R., Bachman, P., Pineau, J., Precup, D. and Meger,
D., 2018, April. Deep reinforcement learning that matters. In Proceedings
of the AAAI conference on artificial intelligence (Vol. 32, No. 1).

[29] Fujimoto, S., Hoof, H. and Meger, D., 2018, July. Addressing function
approximation error in actor-critic methods. In International conference
on machine learning (pp. 1587-1596). PMLR.

[30] Salvato, E., Fenu, G., Medvet, E. and Pellegrino, F.A., 2021. Crossing
the reality gap: A survey on sim-to-real transferability of robot controllers
in reinforcement learning. IEEE Access, 9, pp.153171-153187.

